polar. mtg. 27.06.12

Tdc inhomogeneity & correction

- Tdc inhomogeneity: example in pC data
- ullet Characterization & correction with lpha run data
- Application: corrected Tdc distributions from pC data
- Outlook: correct dN/dt distributions, t₀ ...

Tdc inhomogeneity

• Tdc distribution from a pC sweep run (sum all chan.):

- Huge systematic inhomogeneity in time reconstruction
- Need to correct if ever want to use maximum 1.2 nS Tdc resolution

α Tdc distribution

- We know α 's are distributed uniformly in time
- α Tdc distribution directly related to time reconstruction inhomogeneity
- Here sum all Run12 α runs, all chan. in Y1D:

- Ignore edge effects Tdc≤3, Tdc≥75
- Clear repetitive pattern, zoom in...

α Tdc distribution zoom

Pattern ~repeats every 6 Tdc units:

- The alternating hi/low points due to "constant fraction discriminator" wrong pulse shape in algorithm...
- The triplets of hi or low points due to 3 ADCs in WFD, different gains...
- Pattern ~same for other polarims., different WFDs:

Tdc correction procedure

<u>α Tdc distribution (histogram) has info about Tdc bins:</u>

- α's distributed uniformly in time ⇒
 # events in bin ∝ time width of bin
- Bin centers also shift slightly due to varying widths

Correct any raw Tdc distribution to differential distribution dN/dt just by manipulating its histogram:

- Divide #events by bin's time width
- Adjust bin centers

Correction factors from α distributions:

- Only need 6 correction factors (bin widths): mod(Tdc,6)
- Bin center adjustments cancel every 6 bins

Tdc correction factors

• From Tdc distribution summed over all Run12 α runs, all channels, all polarimeters:

sum corr. factors = 6

- Corrections up to nearly 20%
- Similar analysis I did ~year ago for Run11 α runs ~same factors

⇒ stable property of WFDs

Result: a runs

• Apply correction to sum all Run12 α runs, all chan., all polarim.:

- By construction, corrected dN/dt ~flat
- This was all chan. summed; same factors for individual channels?

Result: a runs per channel

For Blu1, summed over all Run12 α runs, but for each chan.:

- Apply same correction factors
- For each chan., do P0 (constant) fit to raw, corr. Tdc distributions
- Compare $\chi^2/NDOF$ of fits

raw Tdc:

corrected Tdc:

- From raw \rightarrow corrected $\chi^2/NDOF 5 \rightarrow 1$
 - ⇒ Same correction factors effective for all channels

Results: pC sweep data

• Correct same raw Tdc distribution shown earlier:

- Now a much smoother dN/dt distribution
- Still some systematic variations, especially @ high Tdc

Results: bananas

• Can also apply correction to Tdc axis of 2d distributions, e.g. bananas:

'Lumpiness' in Tdc is much reduced

NEXT:

 This was not all a meaningless academic exercise (at least no more so than everything else we do is a meaningless academic exercise)

Tdc correction: next

 Can make nice Tdccor slices at fixed Amp and get good fits to smooth functions:

Tdc correction: next

• Use results of Tdccor fits in Amp slices ⇒ real dN/dt distributions:

Ultimate goal:

 With real dN/dt distributions extract a t₀ using only timing info completely independent of details of C-Si energy response, energy calibration, dead layer & related dogma...

Extras

Pulse shape ⇒ Tdc inhomogeneity?

- No, the inhomogeneity was always there
- Apparently CFD algorithm never tuned for our pulses...